
소프트웨어 공학 개론

강의 10: 디자인 패턴

최은만
동국대학교 컴퓨터공학과

강의 10: 디자인 패턴

최은만
동국대학교 컴퓨터공학과



설계 작업은?

l 소프트웨어 설계는 어려운 일
l 문제를 잘 분할하고
l 유연하고 잘 모듈화 된 좋은 디자인이 되어야 함

l 설계는 시행 착오(trial and error)의 결과
l 시행 착오로 얻은 지식

l 성공적인 설계가 존재
l 두 설계가 똑 같은 일은 없음
l 반복되는 특성

2

l 소프트웨어 설계는 어려운 일
l 문제를 잘 분할하고
l 유연하고 잘 모듈화 된 좋은 디자인이 되어야 함

l 설계는 시행 착오(trial and error)의 결과
l 시행 착오로 얻은 지식

l 성공적인 설계가 존재
l 두 설계가 똑 같은 일은 없음
l 반복되는 특성

2



디자인 패턴

l 디자인 패턴이란?
l 소프트웨어 설계에서 자주 발생하는 문제에 대한 일반적이고 반복적인

해결책을 말한다.
l 여러 가지 상황에 적용될 수 있는 일종의 템플릿

l 디자인 패턴 구성 요소
l 패턴의 이름과 구분
l 문제 및 배경 – 패턴이 사용되는 분야 또는 배경
l 솔루션 – 패턴을 이루는 요소들, 관계, 협동과정
l 사례 – 적용 사례
l 결과 – 패턴의 이점, 영향
l 샘플 코드 – 예제 코드

3

l 디자인 패턴이란?
l 소프트웨어 설계에서 자주 발생하는 문제에 대한 일반적이고 반복적인

해결책을 말한다.
l 여러 가지 상황에 적용될 수 있는 일종의 템플릿

l 디자인 패턴 구성 요소
l 패턴의 이름과 구분
l 문제 및 배경 – 패턴이 사용되는 분야 또는 배경
l 솔루션 – 패턴을 이루는 요소들, 관계, 협동과정
l 사례 – 적용 사례
l 결과 – 패턴의 이점, 영향
l 샘플 코드 – 예제 코드



디자인 패턴

l 패턴의 분류
l Gamma의 23개 패턴

4



팩토리 메소드 패턴

l 객체 생성을 위한 인터페이스의 정의
l 위임(delegation) 형태

l RequiredClass의 생성을 팩토리 메소드를 가진 MyClass에게 위임
l 팩토리 메소드는 createObjectOfrequiredClass()

l 사용 이유
l 베이스 클래스에 속하는 객체 중 하나가 필요한데 그 아래에 있는 자식

객체 중 어떤 것이 필요한지 실행 시간까지 알 수 없을 때

5

l 객체 생성을 위한 인터페이스의 정의
l 위임(delegation) 형태

l RequiredClass의 생성을 팩토리 메소드를 가진 MyClass에게 위임
l 팩토리 메소드는 createObjectOfrequiredClass()

l 사용 이유
l 베이스 클래스에 속하는 객체 중 하나가 필요한데 그 아래에 있는 자식

객체 중 어떤 것이 필요한지 실행 시간까지 알 수 없을 때



팩토리 메소드 패턴

l 팩토리 메소드
l 다른 클래스의 인스턴스를 쉽게 생성하고 리턴하는 임무를 가진 메소드
l 생성자를 부르는 대신 팩토리 메소드를 사용하여 객체를 셋업
l 구축 정보를 사용 정보에서 분리(응집을 높이고 결합을 약하게 하기 위하

여)하여 객체의 생성과 관리를 쉽게
l 서브 클래스의 인스턴스화를 지연하는 효과

6

l 팩토리 메소드
l 다른 클래스의 인스턴스를 쉽게 생성하고 리턴하는 임무를 가진 메소드
l 생성자를 부르는 대신 팩토리 메소드를 사용하여 객체를 셋업
l 구축 정보를 사용 정보에서 분리(응집을 높이고 결합을 약하게 하기 위하

여)하여 객체의 생성과 관리를 쉽게
l 서브 클래스의 인스턴스화를 지연하는 효과

6



사용과 생성을 분리

77



팩토리 순서 다이어그램

8



추상 팩토리 패턴

l 클래스의 집합의 종류를 지정하여 관련된 객체의 집합을 생성할 수
있게 하는 패턴

l 추상 팩토리 패턴이 필요한 경우
l 하나의 업체에서 가전제품을 생산하기 위한 하드웨어를 제공함에도 불구

하고 호환성이 취약하다. 여러 생산자가 만든 장치들을 혼합하여 사용할
때 취합하기 어렵다.

l 추상 팩토리 적용 사례

9

l 클래스의 집합의 종류를 지정하여 관련된 객체의 집합을 생성할 수
있게 하는 패턴

l 추상 팩토리 패턴이 필요한 경우
l 하나의 업체에서 가전제품을 생산하기 위한 하드웨어를 제공함에도 불구

하고 호환성이 취약하다. 여러 생산자가 만든 장치들을 혼합하여 사용할
때 취합하기 어렵다.

l 추상 팩토리 적용 사례



어댑터 패턴

l 이미 개발된 클래스, 즉 레거시 시스템의 인터페이스를 다른 클래스
의 요구에 맞게 인터페이스를 변환해주는 것

l 이미 만들어져 있는 클래스를 사용하고 싶지만 인터페이스가 원하는
방식과 일치하지 않을 때 사용

l 패턴 적용 방법
l 위임을 이용
l 상속을 이용
<상속 이용 예>

10

l 이미 개발된 클래스, 즉 레거시 시스템의 인터페이스를 다른 클래스
의 요구에 맞게 인터페이스를 변환해주는 것

l 이미 만들어져 있는 클래스를 사용하고 싶지만 인터페이스가 원하는
방식과 일치하지 않을 때 사용

l 패턴 적용 방법
l 위임을 이용
l 상속을 이용
<상속 이용 예>



어댑터 패턴

l 특정 클래스의 인터페이스를 클라이언트가 원하는 인터페이스로 변
환

l 적용
l 기존에 존재하는 클래스를 재사용하고 싶지만, 원하는 인터페이스와 맞지 않을 때
l 미리 정해져 있지 않은 클래스들과 상호 작용할 수 있는 재사용 가능 클래스를 만

들려는 경우

11

l 특정 클래스의 인터페이스를 클라이언트가 원하는 인터페이스로 변
환

l 적용
l 기존에 존재하는 클래스를 재사용하고 싶지만, 원하는 인터페이스와 맞지 않을 때
l 미리 정해져 있지 않은 클래스들과 상호 작용할 수 있는 재사용 가능 클래스를 만

들려는 경우



어댑터 패턴 사례

l 그래픽 에디터 프로그램
l 그래픽 객체로 Line 과 Text 가 존재
l TextShape 구현이 복잡한 관계로 기존에 존재하는 TextView 클래스 사

용

Target Adaptee

12

Adapter



싱글톤 패턴

l 시스템에서 단 하나의 인스턴스만을 갖도록 할 필요가 있는 경우 사
용

l 프린터 스풀러
l 파일 시스템 등

l 패턴 사용 요령
l 클래스의 유일한 인스턴스를 넣을 위치를 정한다.
l 생성자의 접근 수정함수를 private로 지정

• 싱글톤을 얻기 위한 클래스 S에 public static 접근 메소드를 포함한다.

l 싱글톤을 얻는 방법은 생성자에게 위임

13

l 시스템에서 단 하나의 인스턴스만을 갖도록 할 필요가 있는 경우 사
용

l 프린터 스풀러
l 파일 시스템 등

l 패턴 사용 요령
l 클래스의 유일한 인스턴스를 넣을 위치를 정한다.
l 생성자의 접근 수정함수를 private로 지정

• 싱글톤을 얻기 위한 클래스 S에 public static 접근 메소드를 포함한다.

l 싱글톤을 얻는 방법은 생성자에게 위임



싱글톤 패턴

l 싱글톤: 그 타입의 유일한 객체
l 많아야 하나의 인스턴스를 가짐을 보장
l 인스턴스에 대하여 어디서든 접근할 수 있게 하여야
l 프로그래머가 인스턴스를 없애버리는(또는 더 생성할) 관리 책무는 빼앗

음
l 사용자에게 유일한 인스턴스를 접근할 수 있는 메소드를 제공

14



싱글톤 패턴의 구현

l 생성자를 밖에서 부르지 못하도록 private으로 만든다.

l 클래스 안에 클래스의 인스턴스를 static private 으로 선언

l 단일 인스턴스를 접근할 수 있는 public getInstance()나 유사 메소
드를 둔다.

l 이 메소드는 다중 스레드로도 실행될 수 있기 때문에 보호되어야 하고 동
기화 되어야

15

l 생성자를 밖에서 부르지 못하도록 private으로 만든다.

l 클래스 안에 클래스의 인스턴스를 static private 으로 선언

l 단일 인스턴스를 접근할 수 있는 public getInstance()나 유사 메소
드를 둔다.

l 이 메소드는 다중 스레드로도 실행될 수 있기 때문에 보호되어야 하고 동
기화 되어야



싱글톤 시퀀스 다이어그램

16



싱글톤 구현 예 #1

l 난수를 만들어 내는 RandomGenerator를 싱글톤으로 만들어 보자
public class RandomGenerator {

private static RandomGenerator gen = new 
RandomGenerator();

public static RandomGenerator getInstance() {
return gen;

}
private RandomGenerator() {}
...

}

이 프로그림의 문제점은?

17

l 난수를 만들어 내는 RandomGenerator를 싱글톤으로 만들어 보자
public class RandomGenerator {

private static RandomGenerator gen = new 
RandomGenerator();

public static RandomGenerator getInstance() {
return gen;

}
private RandomGenerator() {}
...

}

이 프로그림의 문제점은?



싱글톤 구현 예 #2

l 필요할 때까지는 객체를 만들지 않는다.
public class RandomGenerator {

private static RandomGenerator gen = null;
public static RandomGenerator getInstance() {

if (gen == null) {
gen = new RandomGenerator();

}
return gen;

}
...

}

18

l 필요할 때까지는 객체를 만들지 않는다.
public class RandomGenerator {

private static RandomGenerator gen = null;
public static RandomGenerator getInstance() {

if (gen == null) {
gen = new RandomGenerator();

}
return gen;

}
...

}



컴포지트 패턴

l 객체 집합 속에 또 다시 객체 집합을 갖는 경우 사용
l 집합 속에 포함될 객체와 집합을 가지고 있는 객체, 이들 모두가 자기

자신과 동일한 타입(메소드와 데이터)의 객체 리스트를 가질 수 있도
록

l 기본 클래스와 이를 포함하는 컨테이너 클래스를 구분하지 않고 처리
하는 재귀적 합성을 이용할 수 있다.

19



반복자 패턴

l 시스템의 유사한 객체를 다룰 때, 동일한 인터페이스를 이용하여 접
근할 수 있도록 만드는 패턴

l 처리하려는 자료구조가 다른 형태로 바뀌더라도 클라이언트가 영향
을 받지 않음

20

l 시스템의 유사한 객체를 다룰 때, 동일한 인터페이스를 이용하여 접
근할 수 있도록 만드는 패턴

l 처리하려는 자료구조가 다른 형태로 바뀌더라도 클라이언트가 영향
을 받지 않음



반복자 패턴

l 반복자
l 집합에 포함된 객체를 검사하여 반복하는 일을 할 수 있도록 표준 방법을

제공하는 객체

l 장점:
l 클라이언트 자세한 표현 방법을 몰라도 됨
l 접근 인터페이스의 단순화

21



반복자의 구현

class List {
public:

int size() {…}
boolean isEmpty() {…}
ListElement* get(int index) {…}

}
public class ListIterator {

int currentIndex;
public:

boolean hasNext() {…}
ListElement* first() {…}
ListElement* next() {…}
ListElement* current() {…}

}

22

class List {
public:

int size() {…}
boolean isEmpty() {…}
ListElement* get(int index) {…}

}
public class ListIterator {

int currentIndex;
public:

boolean hasNext() {…}
ListElement* first() {…}
ListElement* next() {…}
ListElement* current() {…}

}



옵서버 패턴

l 1대 다의 객체 의존관계를 정의한 것

l 한 객체가 상태를 변화시켰을 때 의존 관계에 있는 다른 객체들에게
자동적으로 통지하고 변경

l 객체 하나를 변경하였을 때, 다른 객체에 통보하여 갱신하기 위한 옵
저버 객체를 둔다.

23



옵서버 패턴

l 뷰(옵서버)가 모델(데이터)안의 값에 영향을 받는 경우

l 두 가지 방법의 절충
l 모델이 변경되면 모든 뷰에게 알려주는 방법(push)
l 모델의 값이 변경되었는지 뷰가 계속 알아보는 방법(polling)

l 서로 독립성을 유지하며 효율적으로 협력하는 방법

24

l 뷰(옵서버)가 모델(데이터)안의 값에 영향을 받는 경우

l 두 가지 방법의 절충
l 모델이 변경되면 모든 뷰에게 알려주는 방법(push)
l 모델의 값이 변경되었는지 뷰가 계속 알아보는 방법(polling)

l 서로 독립성을 유지하며 효율적으로 협력하는 방법



옵서버 패턴

l Subject의 값이 변하면 옵서버에게 통지

l 통지 받은 옵서버는 Subject의 값을 접근하여 받아옴

25



옵서버 패턴

l Subject 객체와 옵서버 객체 간의 coupling을 줄일 수 있음
l Subject 객체는 단지 Observer 객체 list를 가지고 있다는 정도만 알면

된다.

l Subject class와 Observer class가 서로 독립적으로 변경 및 확장 가
능

l 한 객체에 의하여 영향 받는 객체를 쉽게 정리할 수 있음

26

l Subject 객체와 옵서버 객체 간의 coupling을 줄일 수 있음
l Subject 객체는 단지 Observer 객체 list를 가지고 있다는 정도만 알면

된다.

l Subject class와 Observer class가 서로 독립적으로 변경 및 확장 가
능

l 한 객체에 의하여 영향 받는 객체를 쉽게 정리할 수 있음



옵서버 패턴

27



상태 패턴

l 이벤트 의존 애플리케이션에 적합한 패턴
l 시스템이 동작하면서 발생되는 이벤트에 따라 변경이 이루어 질 수

있도록 설계
l 롤플레잉 게임 예제

l MyGameState 타입의 state를 가지고 있다.
l State 는 다형성이 적용됨. 상태 객체를 이용

28

l 이벤트 의존 애플리케이션에 적합한 패턴
l 시스템이 동작하면서 발생되는 이벤트에 따라 변경이 이루어 질 수

있도록 설계
l 롤플레잉 게임 예제

l MyGameState 타입의 state를 가지고 있다.
l State 는 다형성이 적용됨. 상태 객체를 이용



퍼싸드 패턴

l 서브시스템의 내부가 복잡하여 클라이언트 코드가 사용하기 힘들 때
사용

l 간단한 인터페이스만 알아도 서브시스템 주요 기능을 사용
l 복잡한 것을 단순하게 보여줌
l 내부 시스템을 몰라도 사용 가능

29



디자인 패턴의 선택

l 디자인 패턴이 주어진 문제를 어떻게 해결하고 있는지 스터디
l 먼저 디자인 패턴을 잘 숙지

l 주어진 상황에 제일 잘 맞는 패턴이 무엇인지 숙고
l 생성
l 구조
l 행위

l 시스템의 변경, 발전, 재사용 어느 측면이 유력한지 고려하여 적용

30

l 디자인 패턴이 주어진 문제를 어떻게 해결하고 있는지 스터디
l 먼저 디자인 패턴을 잘 숙지

l 주어진 상황에 제일 잘 맞는 패턴이 무엇인지 숙고
l 생성
l 구조
l 행위

l 시스템의 변경, 발전, 재사용 어느 측면이 유력한지 고려하여 적용



237점157점464점

교

Questions?

237점157점464점

교

Questions?


